Rough sets and matroidal contraction

نویسندگان

  • Jingqian Wang
  • William Zhu
چکیده

Rough sets are efficient for data pre-processing in data mining. As a generalization of the linear independence in vector spaces, matroids provide wellestablished platforms for greedy algorithms. In this paper, we apply rough sets to matroids and study the contraction of the dual of the corresponding matroid. First, for an equivalence relation on a universe, a matroidal structure of the rough set is established through the lower approximation operator. Second, the dual of the matroid and its properties such as independent sets, bases and rank function are investigated. Finally, the relationships between the contraction of the dual matroid to the complement of a single point set and the contraction of the dual matroid to the complement of the equivalence class of this point are studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transversal and Function Matroidal Structures of Covering-Based Rough Sets

In many real world applications, information blocks form a covering of a universe. Covering-based rough set theory has been proposed to deal with this type of information. It is more general and complex than classical rough set theory, hence there is much need to develop sophisticated structures to characterize covering-based rough sets. Matroids are important tools for describing graphs and li...

متن کامل

Matroidal Structure of Rough Sets from the Viewpoint of Graph Theory

Constructing structures with other mathematical theories is an important research field of rough sets. As one mathematical theory on sets, matroids possess a sophisticated structure. This paper builds a bridge between rough sets and matroids and establishes the matroidal structure of rough sets. In order to understand intuitively the relationships between these two theories, we study this probl...

متن کامل

Matroidal Structure of Rough Sets Based on Serial and Transitive Relations

The theory of rough sets is concerned with the lower and upper approximations of objects through a binary relation on a universe. It has been applied to machine learning, knowledge discovery, and data mining. The theory of matroids is a generalization of linear independence in vector spaces. It has been used in combinatorial optimization and algorithm design. In order to take advantages of both...

متن کامل

Matrix approach to rough sets through vector matroids over a field

Rough sets were proposed to deal with the vagueness and incompleteness of knowledge in information systems. There are many optimization issues in this field such as attribute reduction. Matroids generalized from matrices are widely used in optimization. Therefore, it is necessary to connect matroids with rough sets. In this paper, we take field into consideration and introduce matrix to study r...

متن کامل

Matroidal Structure of Generalized Rough Sets Based on Tolerance Relations

Rough set theory provides an effective tool to deal with uncertain, granular, and incomplete knowledge in information systems. Matroid theory generalizes the linear independence in vector spaces and has many applications in diverse fields, such as combinatorial optimization and rough sets. In this paper, we construct a matroidal structure of the generalized rough set based on a tolerance relati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1209.5482  شماره 

صفحات  -

تاریخ انتشار 2012